Cryptanalysis of the Birational Permutation Signature Scheme over a Non-commutative Ring
نویسندگان
چکیده
In 2008, Hashimoto and Sakurai proposed a new efficient signature scheme, which is a non-commutative ring version of Shamir’s birational permutation signature scheme. Shamir’s scheme is a generalization of the OSS (Ong-Schnorr-Shamir) signature scheme and was broken by Coppersmith et al. using its linearity and commutativity. The HS (Hashimoto-Sakurai) scheme is expected to be secure against the attack of Coppersmith et al. since the scheme is based on the noncommutative structure. In this paper, we propose an attack against the HS scheme. Our proposed attack is practical under the condition that its step size and the number of steps are small. More precisely, we firstly show that the HS scheme is essentially a commutative scheme, that is, the HS scheme can be reduced to some commutative birational permutation signature scheme. Then we apply Patarin-like attack against the commutative birational permutation signature scheme. We discuss efficiency of our attack by using some experimental results. Furthermore the commutative scheme obtained from the HS scheme is the Rainbowtype signature scheme. We also discuss the security of the Rainbow-type signature scheme, and propose an efficient attack against some class of the Rainbow-type signature scheme.
منابع مشابه
Quo Vadis Quaternion? Cryptanalysis of Rainbow over Non-commutative Rings
The Rainbow Signature Scheme is a non-trivial generalization of the well known Unbalanced Oil and Vinegar Signature Scheme (Eurocrypt '99) minimizing the length of the signatures. Recently a new variant based on non-commutative rings, called NC-Rainbow, was introduced at CT-RSA 2012 to further minimize the secret key size. We disprove the claim that NC-Rainbow is as secure as Rainbow in general...
متن کاملTwisted rings and moduli stacks of “fat” point modules in non-commutative projective geometry
The Hilbert scheme of point modules was introduced by Artin-Tate-Van den Bergh to study non-commutative graded algebras. The key tool is the construction of a map from the algebra to a twisted ring on this Hilbert scheme. In this paper, we study moduli stacks of more general “fat” point modules, and show that there is a similar map to a twisted ring associated to the stack. This is used to prov...
متن کاملArtemia: a family of provably secure authenticated encryption schemes
Authenticated encryption schemes establish both privacy and authenticity. This paper specifies a family of the dedicated authenticated encryption schemes, Artemia. It is an online nonce-based authenticated encryption scheme which supports the associated data. Artemia uses the permutation based mode, JHAE, that is provably secure in the ideal permutation model. The scheme does not require the in...
متن کاملA Digital Signature Using Multivariate Functions on Quaternion Ring
We propose the digital signature scheme on non-commutative quaternion ring over finite fields in this paper. We generate the multivariate function of high degree F(X) . We construct the digital signature scheme using F(X). Our system is immune from the Gröbner bases attacks because obtaining parameters of F(X) to be secret keys arrives at solving the multivariate algebraic equations that is one...
متن کاملOn the commuting graph of non-commutative rings of order $p^nq$
Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with vertex set $RZ(R)$ and two vertices $a$ and $b$ are adjacent iff $ab=ba$. In this paper, we consider the commuting graph of non-commutative rings of order pq and $p^2q$ with Z(R) = 0 and non-commutative rings with unity of order $p^3q$. It is proved that $C_R(a)$ is a commutative ring...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009